Metal Forming and Joining Temperature Measurement

Metal Forming and Joining Temperature Measurement

Induction Heat หรือ เทคนิคการใช้ความร้อนเหนี่ยวนำ พิสูจน์แล้วว่า สามารถเพิ่มกำลังการผลิต ลดต้นทุน ได้งานคุณภาพ และยังสภาพแวดล้อมการทำงานที่สะอาดกว่าวิธีการอื่นๆ  ความสามารถในการทำความร้อนแบบหน่วงของการเหนี่ยวนำความร้อนและการที่เราไม่ต้องอุ่นเครื่อง  ลดเวลาการทำงาน และการประมวลผลไปได้มาก การควบคุมความร้อนเหนี่ยวนำที่แม่นยำช่วยลดการแปรปรวนของวัสดุและความแปรผันของความแข็ง เนื่องจากมันไม่ให้ความร้อนกับสภาพแวดล้อมโดยรอบแต่ให้ความร้อนกับวัสดุโดยตรง  อีกข้อดีของอุปกรณ์ที่ใช้ความร้อนเหนี่ยวนำคือ สามารถอยู่ใกล้กับผู้ปฏิบัติงานหรือกระบวนการอื่น ๆได้ ซึ่งช่วยลดงานขนย้ายวัสดุออกจากพื้นที่ได้

ขั้นตอนต่างๆด้านล่างนี้ เป็นกรรมวิธีในการขึ้นรูปโลหะ และการประกอบโลหะเข้าด้วยกัน ด้วย pyrometers IR และกล้องถ่ายภาพความร้อน เราคัดลอกเฉพาะส่วนที่เกี่ยวกับการวัดและควบคุมอุณหภูมิมาให้ เป็นบทสรุปคร่าวๆ  

Forging

Forging is shaping heated metal by compression. Forged parts are used wherever a component requires high strength and durability. Because forging has limited dimensional precision, further processing such as machining is often needed to make a finished part. A high temperature induction furnace is used to heat the metal ingots or billets. Presses or hammers powered by compressed air, electricity or hydraulics shape the metal into a piece that is stronger than an equivalent cast or machined part. Forging processes can be performed at various temperatures accounting for the material’s recrystallization temperature. Process Sensors Corporation (PSC) pyrometers and thermal imaging cameras are recommended to monitor temperature at various points within the forging process.

BrazingResistive
Brazing Temperature

Brazing is the process of joining two materials together using a compatible filler such as lead, tin, copper, silver, nickel and their alloys. In brazing, the filler is melted and then pulled into a joint by capillary action where it solidifies to join the two base materials. Brazing temperatures range from 450°C up to 1150°C, and successful brazing processes depends upon joint design, clearance between the joining surfaces, cleanliness and temperature control. Cleanliness can be achieved by using a flux which dissolves dirt or oxides, displacing them with the filler. The use of flux can be eliminated by performing the process in a controlled atmosphere with a combination of inert and active gases to shield the operation. To monitor conditions for optimal brazing, PSC pyrometers and thermal imaging cameras are recommended.

Shrink Fitting

Shrink-fitting is a technique in which an interference fit is achieved by a relative size change after assembly. This is usually achieved by heating or cooling one component before assembly and allowing it to return to the ambient temperature after assembly, employing the phenomenon of thermal expansion to make a joint. As the adjoined pieces reach the same temperature, the joint becomes strained and stronger. Induction shrink fitting requires precisely controlled temperature monitoring to preheat metal components between 150°C and 300°C. This causes them to expand, allows for insertion or removal of another component. Shrink fitting can also be facilitated by chilling the two materials using liquid nitrogen, dry ice or placement in a freezer. To monitor for critical temperatures when shrink fitting, PSC pyrometers are recommended at multiple points in the process.

Vacuum Melting

The creation and casting of superalloys and other advanced or reactive metals requires sophisticated melting and re-melting systems that operate under a vacuum or controlled atmosphere. Many high-quality specialty metals and materials are produced and refined using induction melting systems.  PSC pyrometers are typically used in this process to provide precise temperature measurement and control.